Unit 5 - Regression and Correlation
 Practice Problems (1 of 3)
 Solutions

Download from the course website.
simplelinear.xlsx

\# 1.

This exercise gives you practice doing a simple linear regression using simplelinear.xlsx. This data set has $n=31$ observations of boiling points ($\mathrm{Y}=$ boiling) and temperature ($\mathrm{X}=$ temp). You will be exploring the following two simple linear models:
(i) $\mathrm{Y}={ }_{0}+{ }_{1} \mathrm{X}$; where $\mathrm{Y}=$ boiling and $\mathrm{X}=$ temp
(ii) newy $={ }_{0}+{ }_{1} \mathrm{X}$; where newy $=100 * \log _{10}(\mathrm{y})$ and where $\mathrm{y}=$ boiling and $\mathrm{X}=$ temp

1a. Create a new variable newy $=100 * \log _{10}$ (boiling)
1b. For each model, obtain:
i. The fitted line estimates of ${ }_{0}$ and ${ }_{1}$
ii. Analysis of variance table
iii. $\quad \mathrm{R}^{2}=\%$ of the variability in the outcome explained by the fitted line
iv. Scatter plot with overlay of fitted line

1c. In 3-5 sentences, write a one-paragraph interpretation of your two model fits.

Art of Stat Users

```
1a. Create a new variable newy = 100* 知10(boiling)
1b. For each model, obtain:
    i. The fitted line estimates of }\mp@subsup{^}{0}{}\mathrm{ and }\mp@subsup{^}{1}{
    ii. Analysis of variance table
    iii. }\quad\mp@subsup{R}{}{2}=%\mathrm{ of the variability in the outcome explained by the fitted line
    iv. Scatter plot with overlay of fitted line
Fit of Model i: Y = boiling and X = temp
__1. Launch Excel and open simplelinear.xlsx
__2. Do an EDIT/COPY of cells A2:B32. Do not include column headings. Minimize Excel but do not close.
__3. Launch ArtofStat here www.artofstat.com > Online WebApps > Linear Regression
__4. From ENTER DATA drop down, choose: YOUR OWN
__5. PASTE your data.
__6. Click SUBMIT DATA.
From the options at left, click to display
__7. the analysis of variance table (ANOVA TABLE)
-_8. the fitted regression line on the plot (REGRESSION LINE)
```


You should now see:

Fit of Model ii: $Y=$ newy and $X=$ temp
__1. Activate Excel (simplelinear.xlsx should still be open)
Make a copy of the column containing $X=$ temp
_3. Create a new column called newy calculated as newy $=100 * \log _{10}(b o i l i n g)$

[^0]You should now see:


```
R Users
1a. Create a new variable newy }=100*\mp@subsup{\operatorname{log}}{10}{}(\mathrm{ boiling)
1b. For each model, obtain:
    i. The fitted line estimates of }\mp@subsup{\}{0}{}\mathrm{ and }\mp@subsup{}{1}{
ii. Analysis of variance table
iii. }\quad\mp@subsup{R}{}{2}=%\mathrm{ of the variability in the outcome explained by the fitted line
iv. Scatter plot with overlay of fitted line
Fit of Models i and ii:
    i: Y = boiling and X = temp
ii: Y = newy and X = temp
setwd("/Users/cbigelow/Desktop/")
options(scipen=1000) # scipen=1000 turns off scientific notation
rm(list=ls()) # rm(list=ls()) clears the workspace/environment
Input data.
library(readxl)
dfboiling <- read_excel("simplelinear.xlsx") # During import, I named the dataframe dfboiling for ease
Create newy
dfboiling$newy <- 100*log10(dfboiling$boiling)
Model i: y=boiling x=temp
#a) Fitted line estimates of intercept and slope
m1 <- lm(boiling ~ temp, data=dfboiling)
coefficients(m1)
## (Intercept) temp
## -65.3429977 0.4437942
#b) Analysis of Variance (anova) table 
## Analysis of Variance Table
##
## Response: boiling
## Df Sum Sq Mean Sq F value Pr(>F)
## temp 1 450.56 450.56 336.6 < 0.00000000000000022
## Residuals 29 38.82 1.34
#c) R-squared
summary(m1)$r.squared # Tip! Issue the command str(m1) to obtain List of stored quantities
## [1] 0.9206773
```

Model i: Scatterplot w Overlay of Fitted Line
library (ggplot2)
ggplot(data=dfboiling, aes(x=temp,y=boiling)) + \# ggplot requires data=, aes() and geom_NAME()
(dis)
geom_smooth(method=lm, se=FALSE) +
\# Plot line first. se=FALSE suppresses the CI band
geom_point() +
\# geom_point() plots the points on top of line
xlab("Temperature") +
\# Additional layers are optional (but nice!)
ylab("Boiling") +
ggtitle("Model 1: $y=b o i l i n g \quad x=t e m p ") ~+$
theme_bw()

Model ii: newy=100*log10(boiling) x=temp
\#a) Fitted line
m2 <- Lm(newy ~ temp, data=dfboiling)
coefficients(m2)
\#\# (Intercept) temp
\#\# -48.8582854 0.9261547
\#b) Anova table
temp <- anova(m2)
print (temp, signif.stars=FALSE)
\#\# Analysis of Variance Table
\#\#
\#\# Response: newy
\#\# Df Sum Sq Mean Sq F value $\operatorname{Pr}(>F)$
\#\# temp $11962.21962 .25 \quad 223.690 .000000000000003623$
\#\# Residuals $29 \quad 254.4 \quad 8.77$
\#c) R-squared
summary (m2)\$r.squared
\#\# [1] 0.8852331

```
Model ii: Scatterplot w Overlay of Fitted Line library (ggplot2)
ggplot(data=dfboiling, aes(x=temp,y=newy)) +
    geom_smooth(method=lm, se=FALSE) + # geom_smooth( ) to plot line first
    geom_point() + # geom_point( ) to layer scatter plot on top
    xlab("Temperature") +
    ylab("newy = 100*log10(Boiling)") +
    ggtitle("Model 2: y=boiling x=temp") +
    theme_bw()
```


1c. In 3-5 sentences, write a one-paragraph interpretation of your two model fits.
In this sample of $\mathrm{n}=31$ observations, the scatter plot reveals two outlying values. Their inclusion may or may not be appropriate.

In an analysis that includes all $n=31$ observations, a simple linear regression of $\mathrm{y}=$ boiling point on $\mathrm{x}=$ temperature explains more of the variability in the outcome than a simple linear regression of newy $=100 * \log _{10}$ (boiling) on $\mathrm{x}=$ temperature ($R^{2}=92 \%$ versus 89%).

Take care! - It would not make sense to compare the residual mean squares of the two models because the scales of measurement involved are different.
\#2.
Note - This question does NOT require use of software (R or otherwise!)
This exercise gives you practice working with a fitted model that is provided to you. A psychiatrist wants to know whether the level of pathology (Y) in psychotic patients 6 months after treatment could be predicted with reasonable accuracy from knowledge of pretreatment symptom ratings of thinking disturbance (X_{1}) and hostile suspiciousness (X_{2}).

2a. The least squares estimation equation involving both independent variables is given by

$$
\mathrm{Y}=-0.628+23.639\left(\mathrm{X}_{1}\right)-7.147\left(\mathrm{X}_{2}\right)
$$

Using this equation, determine the predicted level of pathology (Y) for a patient with pretreatment scores of 2.80 on thinking disturbance and 7.0 on hostile suspiciousness. How does the predicted value obtained compare with the actual value of 25 observed for this patient?

$$
\begin{aligned}
\widehat{Y} & =15.53, \text { obtained as f ollows: } \\
\widehat{Y} & =-0.628+23.639 \cdot X_{1}-7.147 \cdot X_{2} \\
& =-0.628+(23.639 \cdot 2.80)-(7.147 \cdot 7.0) \\
& =15.53
\end{aligned}
$$

The predicted value of 15.53 is lower than the actual value of 25 observed for this patient.

2b. Using the analysis of variance tables below, carry out the overall F test for each of three models: i) model with X_{1} alone; ii) model with X_{2} alone; and iii) model with both X_{1} and X_{2}.

Source	DF	Sum of Squares
Regression on X_{1}	1	1546
Residual	51	12246

Source	DF	Sum of Squares
Regression on X_{2}	1	160
Residual	51	13632

Source	DF	Sum of Squares
Regression on $\mathrm{X}_{1}, \mathrm{X}_{2}$	2	2784
Residual	50	11008

Model Containing X $_{1}$ ALONE

$$
\begin{aligned}
& F=\left(\frac{\mathrm{SSQ} \text { Regression on } \mathrm{X}_{1} / \mathrm{DF} \text { Regression }}{\mathrm{SSQ} \text { residual/DF Residual }}\right)=\left(\frac{1546 / 1}{12,246 / 51}\right)=6.4385 \\
& \text { on } \mathrm{DF}=1,51 \\
& \text { p-value }=0.01427
\end{aligned}
$$

Application of the null hypothesis model has led to an extremely unlikely result (p -value $=.014$), prompting statistical rejection of the null hypothesis. The fitted linear model in X_{1} explains statistically significantly more of the variability in level of pathology (Y) than is explained by $\overline{\mathrm{Y}}$ (the intercept model) alone.

R code for p-value
$\mathrm{pf}(6.4385, \mathrm{df} 1=1, \mathrm{df} 2=51$, lower.tail=FALSE)
[1] 0.01426712

Model Containing X \mathbf{X}_{2} ALONE

$$
\begin{aligned}
& F=\left(\frac{\text { SSQ Regresion on } \mathrm{X}_{2} / \mathrm{DF} \text { Regression }}{\text { SSQ Residual/DF Residual }}\right)=\left(\frac{160 / 1}{13,632 / 51}\right)=0.5986 \\
& \text { on } \mathrm{DF}=1,51 \\
& \text { p-value }=0.44268
\end{aligned}
$$

Here, application of the null hypothesis model has not led to an extremely unlikely result (p-value $=.44$). The null hypothesis is therefore not rejected. The fitted linear model in X_{2} does not explain statistically significantly more of the variability in level of pathology (Y) than is explained by $\overline{\mathrm{Y}}$ (the intercept model) alone.

R code for p-value
$\mathrm{pf}(0.5986, \mathrm{df} 1=1, \mathrm{df} 2=51$, lower.tail=FALSE)
[1] 0.4426844

Model Containing X_{1} and \mathbf{X}_{2}

$$
\begin{aligned}
& F=\left(\frac{\mathrm{SSQ} \text { regression on } \mathrm{X}_{1} \text { and } \mathrm{X}_{2} / \text { Regression df }}{\mathrm{SSQ} \text { residual } / \text { Residual df }}\right)=\left(\frac{2,784 / 2}{11,008 / 50}\right)=6.3227 \\
& \quad \text { on } \mathrm{DF}=2,50 \\
& \text { p-value }=0.00356 \rightarrow
\end{aligned}
$$

Last but not least, here, application of the null hypothesis model has led to an extremely unlikely result (p -value $=$.00356), prompting statistical rejection of the null hypothesis. The fitted linear model in X_{1} and X_{2} explains statistically significantly more of the variability in level of pathology (Y) than is explained by $\overline{\mathrm{Y}}$ (the intercept model) alone.
R code for p-value
pf(6.3227, df1=2,df2=50, lower.tail=FALSE)
[1] 0.003564679

2c. Based on your results in part (b), how would you rate the importance of the two variables in predicting Y?
X_{1} explains a significant proportion of the variability in Y when modelled as a linear predictor. X_{2} does not. (However, we don't know if a different functional form might have been important.)

2 d . What are the R^{2} values for the three regressions referred to in part (b)?

$$
\begin{aligned}
& \begin{array}{l}
\text { Total SSQ= (Regression SSQ) }+(\text { Residual SSQ }) \text { is constant. } \\
\text { Therefore total SSQ can be calculated from just one anova table: }
\end{array} \\
& \qquad \begin{aligned}
& \text { Total }(\mathrm{SSQ})=\quad 1,546+12,246=13,792 \\
& \mathrm{R}^{2}\left(\mathrm{X}_{1} \text { only }\right)=\quad(\text { Re gression SSQ }) /(\text { Total SSQ }) \\
&=\quad(1546) /(13,792)=0.1121 \\
& \mathrm{R}^{2}\left(\mathrm{X}_{2} \text { only }\right)=\quad(160) /(13,792)=0.0116 \\
& \mathrm{R}^{2}\left(\mathrm{X}_{1} \text { and } \mathrm{X}_{2}\right)=(2784) /(13,792)=0.2019
\end{aligned}
\end{aligned}
$$

2e. Based on the above, in your opinion, which is the best model involving either one or both of the two independent variables?

```
Eliminate from consideration model with \(\mathrm{X}_{2}\) only.
Compare model with \(X_{1}\) alone versus \(X_{1}\) and \(X_{2}\) using partial \(F\) test.
Partial \(F=\frac{\left\{\left(\mathrm{SSQ} \text { Regression on } \mathrm{X}_{1}, \mathrm{X}_{2}\right)-\left(\mathrm{SSQ} \text { Regression on } \mathrm{X}_{1}\right)\right\} / \mathrm{VDF}}{\mathrm{SSQ} \text { Residual for model w } \mathrm{X}_{1}, \mathrm{X}_{2} / \text { Residual } \mathrm{DF}}=\frac{(27841546) / 1}{(11,008) / 50}\)
    \(=5.6263\) on \(\mathrm{DF}=1,50\)
P -value \(=0.02162\)
Addition of \(\mathrm{X}_{2}\) to model containing \(\mathrm{X}_{1}\) is statistically significant ( p -value \(=.02\) ). \(\rightarrow\)
More appropriate model includes \(X_{1}\) and \(X_{2}\)
\(R\) code for \(p\)-value
\(\mathrm{pf}(5.6263, \mathrm{df} 1=1, \mathrm{df} 2=50\), lower.tail=FALSE)
[1] 0.0215831
```

\#3.

Note - This question does NOT require use of software (R or otherwise!) with one exception: to obtain p-values for parts a-c. Tip - Use Art of Stat if you like!
This exercise gives you practice working with analysis of variance tables. In an an experiment to describe the toxic action of a certain chemical on silkworm larvae, the relationship of $\log _{10}($ dose $)$ and $\log _{10}\left(l_{\text {arva }}\right.$ weight) to $\log _{10}$ (survival) was sought. The data, obtained by feeding each larva a precisely measured dose of the chemical in an aqueous solution and then recording the survival time (ie time until death) are given in the table. Also given are relevant computer results and the analysis of variance table.

Larva	1	2	3	4	5	6	7	8
$\mathrm{Y}=\log _{10}$ (survival time)	2.836	2.966	2.687	2.679	2.827	2.442	2.421	2.602
$\mathrm{X}_{1}=\log _{10}$ (dose)	0.150	0.214	0.487	0.509	0.570	0.593	0.640	0.781
$\mathrm{X}_{2}=\log _{10}$ (weight)	0.425	0.439	0.301	0.325	0.371	0.093	0.140	0.406
Larva	9	10	11	12	13	14	15	
$\mathrm{Y}=\log _{10}$ (survival time)	2.556	2.441	2.420	2.439	2.385	2.452	2.351	
$\mathrm{X}_{1}=\log _{10}$ (dose)	0.739	0.832	0.865	0.904	0.942	1.090	1.194	
$\mathrm{X}_{2}=\log _{10}$ (weight)	0.364	0.156	0.247	0.278	0.141	0.289	0.193	

$$
\begin{aligned}
& \mathrm{Y}=2.952-0.550\left(\mathrm{X}_{1}\right) \\
& \mathrm{Y}=2.187+1.370\left(\mathrm{X}_{2}\right) \\
& \mathrm{Y}=2.593-0.381\left(\mathrm{X}_{1}\right)+0.871\left(\mathrm{X}_{2}\right)
\end{aligned}
$$

Source	DF	Sum of Squares
Regression on X_{1}	1	0.3633
Residual	13	0.1480

Source	DF	
Regression on X_{2}	1	Sum of Squares
Residual	13	0.3367

Source	DF	Sum of Squares
Regression on $\mathrm{X}_{1}, \mathrm{X}_{2}$	2	0.4642
Residual	12	0.0471

3a. Test for the significance of the overall regression involving both independent variables X_{1} and X_{2}.

$$
\begin{aligned}
& \mathrm{X}_{1} \text { and } \mathrm{X}_{2} \\
& F=\frac{\left(\mathrm{SSQ} \text { regression on } \mathrm{X}_{1} \text { and } \mathrm{X}_{2}\right) / 2}{(\mathrm{SSQ} \text { Residual }) / 12}=\frac{(0.4642) / 2}{(0.0471) / 12}=59.18 \text { on } D F=2,12 \\
& P \quad \text { value }<0.0001
\end{aligned}
$$

Application of the null hypothesis model has led to an extremely unlikely result (p -value $=.0001$), prompting statistical rejection of the null hypothesis. The fitted linear model in X_{1} and X_{2} explains statistically significantly more of the variability in $\log _{10}$ (survival time) (Y) than is explained by $\overline{\mathrm{Y}}$ (the intercept model) alone.
pf(59.1818, df1=2, df2=12, lower.tail=FALSE)
[1] 0.0000006083442

3b. Test to see whether using X_{1} alone significantly helps in predicting survival time.

$$
\begin{aligned}
& \mathrm{X}_{1} \text { alone } \\
& F=\frac{(0.3633) / 1}{(0.1480) / 13}=\frac{\left(\mathrm{SSQ} \text { Regression on } \mathrm{X}_{1}\right) / 1}{(\mathrm{SSQ} \text { Residual }) / 13}=31.9115 \text { on } D F=1,13 \\
& P \text { value }=0.00008
\end{aligned}
$$

Application of the null hypothesis model has led to an extremely unlikely result (p-value $=.00008$), prompting statistical rejection of the null hypothesis. The fitted linear model in X_{1} explains statistically significantly more of the variability in $\log _{10}$ (survival time) (Y) than is explained by $\overline{\mathrm{Y}}$ (the intercept model) alone.

R code for p-value
$\overline{p f(31.9115, d f 1=1, ~ d f 2=13, ~ l o w e r . t a i l=F A L S E) ~}$
[1] 0.00007942699

3c. Test to see whether using X_{2} alone significantly helps in predicting survival time.

$$
\begin{aligned}
& \mathrm{X}_{2} \text { alone } \\
& F=\frac{\left(\mathrm{SSQ} \text { Regression on } \mathrm{X}_{2}\right) / 1}{(\mathrm{SSQ} \text { Residual }) / 13}=\frac{(0.3367) / 1}{(0.1746) / 13}=25.07 \quad \text { on } \quad D F=1,13 \\
& P \quad \text { value }=0.00027
\end{aligned}
$$

Application of the null hypothesis model has led to an extremely unlikely result (p -value $=.00027$), prompting statistical rejection of the null hypothesis. The fitted linear model in X_{2} explains statistically significantly more of the variability in $\log _{10}$ (survival time) (Y) than is explained by $\overline{\mathrm{Y}}$ (the intercept model) alone.

R code for p-value
pf(25.07, df1=1, df2=13, lower.tail=FALSE)
[1] 0.0002399706

3d. Compute R^{2} for each of the three models.

$$
\begin{array}{ll}
\text { TotalSSQ }=0.5113 & \\
\mathrm{R}^{2}\left(\mathrm{X}_{1} \text { and } \mathrm{X}_{2}\right)=0.4642 / 0.5113=0.9079 \\
\mathrm{R}^{2}\left(\mathrm{X}_{1} \text { alone }\right)=0.3633 / 0.5113=0.7105 \\
\mathrm{R}^{2}\left(\mathrm{X}_{2} \text { alone }\right)=0.3367 / 0.5113=0.6585
\end{array}
$$

3e. Which independent predictor do you consider to be the best single predictor of survival time?

Using just the criteria of the overall F test and comparison of R^{2}, the single predictor model containing X_{1} is better.

3f. Which model involving one or both of the independent predictors do you prefer and why?

```
Partial F for comparing model with }\mp@subsup{\textrm{X}}{1}{}\mathrm{ alone versus model with }\mp@subsup{\textrm{X}}{1}{}\mathrm{ and }\mp@subsup{\textrm{X}}{2}{
= \frac{(\Delta Regression SSQ)/(\Delta Regression df )}{(Full model Residual SSQ)/(Full model Residual df )}}=\frac{(.4642-.3633)/(2-1)}{.0471/12
= 25.707006
R code for p-value
pf(25.07, df1=1, df2=12, lower.tail=FALSE)
[1] 0.0003057104
```


[^0]: _4. Do an EDIT/COPY of your two new columns: $X=$ copy of temp and $Y=$ newy (In my excel, this is columns "E" and "F") _5. Launch ArtofStat here www.artofstat.com > Online WebApps > Linear Regression
 _6. As you did for model i, fit model ii.
 _7. At left, click to display anova table.
 __8. At left, click to display fitted regression line on plot.

